UNIT V
GRAPH MATRICES AND APPLICATIONS

Problem with Pictorial Graphs

Graphs were introduced as an abstraction of softwarestructure.

Whenever a graph is used as a model, sooner or later we trace paths through it- to find a set of
covering paths, a set of values that will sensitize paths, the logic function that controls the flow,
the processing time of the routine, the equations that define the domain, or whether a state is
reachable ornot.

Path is not easy, and it’s subject to error. You can miss a link here and there or cover some links
twice.

One solution to this problem is to represent the graph as a matrix and to use matrix operations
equivalent to path tracing. These methods are more methodical and mechanical and don’t depend
on your ability to see a path they are morereliable.

Tool Building

If you build test tools or want to know how they work, sooner or later you will be implementing
or investigating analysis routines based on thesemethods.

It is hard to build algorithms over visual graphs so the properties or graph matrices are
fundamental to toolbuilding.

The Basic Algorithms

The basic tool kit consistsof:

Matrix multiplication, which is used to get the path expression from every node to every
othernode.

A partitioning algorithm for converting graphs with loops into loop free graphs or
equivalence classes.

A collapsing process which gets the path expression from any node to any othernode.

The Matrix of a Graph

e A graph matrix is a square array with one row and one column for every node in thegraph.

e Each row-column combination corresponds to a relation between the node corresponding to
the row and the node corresponding to thecolumn.

e The relation for example, could be as simple as the link name, if there is a link between the
nodes.

Some of the things to beobserved:

The size of the matrix equals the number of nodes.

There is a place to put every possible direct connection or link between any and any othernode.

The entry at a row and column intersection is the link weight of the link that connects the two

nodes in thatdirection.

A connection from node i to j does not imply a connection from node j to nodei.

If there are several links between two nodes, then the entry is a sum; the “+” sign denotes parallel

links asusual.

Some Graphs and their
Matrices A

® [®
a
® O

A simple weight
B A simplest weight we can use is to note that there is or isn’t a connection. Let “1” mean that there
is a connection and “0” mean that thereisn’t.

B The arithmetic rulesare:
B 1+1=1 1*1=1
B 1+0=1 1*0=0
B 0+0=0 0*0=0
[]

A matrix defined like this is called connectionmatrix.
Connection matrix
B The connection matrix is obtained by replacing each entry with 1 if there is a link and 0 if there
isn’t.
B Asusual we don’t write down 0 entries to reduce theclutter.

Connection Matrix-continued

Each row of a matrix denotes the out links of the node corresponding to thatrow.
Each column denotes the in links corresponding to thatnode.

A branch is a node with more than one nonzero entry in itsrow.

A junction is node with more than one nonzero entry in its column.

A self loop is an entry along thediagonal.

Cyclomatic Complexity

The cyclomatic complexity obtained by subtracting 1 from the total number of entries in each row
and ignoring rows with no entries, we obtain the equivalent number of decisions for each row.
Adding these values and then adding 1 to the sum yields the graph’s cyclomaticcomplexity.

11 2-1=1

1 1-1 1+1=2 (cyclomatic complexity)

)
o

0

1 1-1

Relations

A relation is a property that exists between two objects of interest.

Forexample,

“Node a is connected to node b” or aRb where “R” means “is connectedto”.

“a>=b” or aRb where “R” means greater than orequal”.

A graph consists of set of abstract objects called nodes and a relation R between thenodes.
If aRb, which is to say that a has the relation R to b, it is denoted by a link from a tob.

For some relations we can associate properties called as linkweights.

Transitive Relations

A relation is transitive if aRb and bRc impliesaRc.
Most relations used in testing aretransitive.

Examples of transitive relations include: is connected to, is greater than or equal to, is less than or
equal to, is a relative of, is faster than, is slower than, takes more time than, is a subset of,
includes, shadows, is the bossof.

Examples of intransitive relations include: is acquainted with, is a friend of, is a neighbor of, is
lied to, has a du chainbetween.

Reflexive Relations

A relation R is reflexive if, for every a,aRa.

A reflexive relation is equivalent to a self loop at everynode.

Examples of reflexive relations include: equals, is acquainted with, is a relativeof.
Examples of irreflexive relations include: not equals, is a friend of, is on top of, isunder.

Symmetric Relations

A relation R is symmetric if for every a and b, aRb impliesbRa.
A symmetric relation mean that if there is a link from a to b then there is also a link from b toa.
A graph whose relations are not symmetric are called directedgraph.

e A graph over a symmetric relation is called an undirectedgraph.
e The matrix of an undirected graph is symmetric (a;=a;;) for alli,j)

Antisymmetric Relations

e Arrelation R is antisymmetric if for every a and b, if aRb and bRa, then a=b, or they are the same
elements.

o Examples of antisymmetric relations: is greater than or equal to, is a subset of time.

e Examples of nonantisymmetric relations: is connected to, can be reached from, is greater than, is
a relative of, is a friendof

Equivalence Relations

e Anequivalence relation is a relation that satisfies the reflexive, transitive, and symmetric
properties.

e Equality is the most familiar example of an equivalencerelation.

e If a set of objects satisfy an equivalence relation, we say that they form an equivalence class over
thatrelation.

e The importance of equivalence classes and relations is that any member of the equivalence class
is, with respect to the relation, equivalent to any other member of thatclass.

e The idea behind partition testing strategies such as domain testing and path testing, is that we can
partition the input space into equivalenceclasses.

e Testing any member of the equivalence class is as effective as testing themall.

Partial Ordering Relations
o A partial ordering relation satisfies the reflexive, transitive, and antisymmetricproperties.

e Partial ordered graphs have several important properties: they are loop free, there is at least one
maximum element, and there is at least one minimumelement.

The Powers of a Matrix

e Each entry in the graph’s matrix expresses a relation between the pair of nodes that corresponds
to thatentry.

e Squaring the matrix yields a new matrix that expresses the relation between each pair of nodes
via one intermediate node under the assumption that the relation istransitive.

e The square of the matrix represents all path segments two linkslong.
e The third power represents all path segments three linkslong.

Matrix Powers and Products
e Given a matrix whose entries are aij, the square of that matrix is obtained by replacing every entrywith
e n
* 8= Aidyj
o k1
o more generally, given two matrices A and B with entries aik and bkj, respectively, their product is a new matrix C, whose
entries are cij,where:
" n
o Cj=X ajby

[] k=1

3.1. The Set of AllPaths

Our main objective is to use matrix operations to obtain the set of all paths between all nodes or,
equivalently, a property (described by link weights) over the set of all paths from every node to every
other node, using the appropriate arithmetic rules for such weights. The set of all paths between all nodes
is easily expressed in terms of matrix operations. It’s given by the following infinite series of matrix
pOWers:

This is an eloquent, but practically useless, expression. Let | be an n by n matrix, where n is the number
of nodes. Let I’s entries consist of multiplicative identity elements along the principal diagonal. For link
names, this can be the number “1.” For other kinds of weights, it is the multiplicative identity for those
weights. The above product can be re-phrased as:

Al+A+A*+ A+ A LAY
But often for relations, A+ A= A, (A +1)>=A?’+ A+A + | A+ A + |. Furthermore, for any
finiten, A+ D=1+ A+ A7+ A%, . A"

Therefore, the original infinite sum can be replaced by
0
> A =AA+H)”?
i=1
This is an improvement, because in the original expression we had both infinite products and infinite sums,
and now we have only one infinite product to contend with. The above is valid whether or not there are
loops. If we restrict our interest for the moment to paths of length n — 1, where n is the number of nodes,
the set of all such paths is givenby

n-1
Y A =AA+H)"?
i=1

This is an interesting set of paths because, with n nodes, no path can exceed n — 1 nodes without
incorporating some path segment that is already incorporated in some other path or path segment.
Finding the set of all such paths is somewhat easier because it is not necessary to do all the intermediate

products explicitly. The following algorithm iseffective:

1. Express n— 2 as a binarynumber.

2. Take successive squares of (A + 1), leading to (A + 1)%, (A + 1)*, (A + 1)8, and soon.

3. Keep only those binary powers of (A + 1) that correspond to a 1 value in the binary representation ofn— 2.
4. The set of all paths of length n — 1 or less is obtained as the product of the matrices you got in step 3

with the original matrix.

As an example, let the graph have 16 nodes. We want the set of all paths of length less than or equal to 15.
The binary representation of n — 2 (14) is 2 + 2% + 2. Consequently, the set of paths is given by

15
Y A" =AA+HDE A+ (A+])?
=1

Partitioning Algorithm
e Consider any graph over a transitive relation. The graph may haveloops.

o We would like to partition the graph by grouping nodes in such a way that every loop iscontained
within one group oranother.

e Such a graph is partiallyordered.
e There are many used for an algorithm that doesthat:

¢ We might want to embed the loops within a subroutine so as to have a resulting graph which is
loop free at the toplevel.

e Many graphs with loops are easy to analyze if you know where to break theloops.

e While you and I can recognize loops, it’s much harder to program a tool to do it unless you have
a solid algorithm on which to base thetool.

Partitioning algorithm:

il f ek
e i § 1
5|k
0N (IR 1!
1 1
1
1 1 1
1 1

6 RELATION MATRIX

... Considering that the graph may have loops.
Diagonal entries are made to represent self loop.

Partitioning algorithm(cont...):

(S = S
S ™
R OR R R R

A T T
a T K €

[S e = T = ~ S

1

TRANSITIVE CLOSURE MATRIX
... Explanation for getting the transitive closure matrix
& its transpose is not included since we assumed that
you would know this. Please get back if you need any
info. [

Partitioning algorithm(cont...):

1
1 1
/
. 1 1
B ;

| g
[
BBk e
[

INTERSECTION WITH ITS TRANSPOSE

a Considering the entries is the above matrix, we
have the following...
Example: to get values

for B — It is evident that
B(row 2) has entries at
column 2 & 7. Hence the
values.

00

moowp»

munmnn

OO wWN =
N
(3]

—————
[

Partitioning algorithm(cont...):

@
@
@

The resulting graph is ---

A B C D E
" ol
B : b 1 From the
earlier slide,
31 1 we had --
= A=[1]
1 B=[2,7]
D C=[3,4,5]
D=[6]
E = e E=[8]

... Considering that the graph had self loops.
Diagonal entries are made to represent self loop.

Node Reduction Algorithm (General)

The matrix powers usually tell us more than we want to know about mostgraphs.

In the context of testing, we usually interested in establishing a relation between two nodes-
typically the entry and exitnodes.

In a debugging context it is unlikely that we would want to know the path expression between
every node and every other node.

The advantage of matrix reduction method is that it is more methodical than the graphical method
called as node by node removalalgorithm.

Select a node for removal; replace the node by equivalent links that bypass that node and add
those links to the links theyparallel.

Combine the parallel terms and simplify as youcan.

Observe loop terms and adjust the out links of every node that had a self loop to account for the
effect of theloop.

The result is a matrix whose size has been reduced by 1. Continue until only the two nodes of
interestexist.

10

Node Reduction Algorithm

STEP 1: Eliminate a node 3 d b

and replace it with a set of

equivalent links. .. & € -
g e h

Say, we start with eliminating
node 5-

TIP: The out-link of the node removed will correspond to
the row and the in-link will correspond to the column

Node Reduction Algorithm

Eliminating node 5 ... the self loop is represented with a *
and the outgoing link from the node is multiplied . . .

Say, we start with eliminating 4 c f
node 5. First, we remove the
self loop- 5 -

TIP: The out-link of the node removed will correspond to
the row and the in-link will correspond to the column

11

Node Reduction Algorithm

Eliminating node 5 ... the self loop is represented with a *
and the outgoing link from the node is multiplied . . .

a b C

+
fh*e (fh*g)

Now, we eliminate node 5-

TIP: The out-link of the node
removed will correspond to the 3
row and the in-link will correspond

to the column

12

Node Reduction Algorithm

Eliminating node 4 ... the parallel link is added up and serial
links multiplied . ..

Now, we eliminate node 4-

Removing the loop term yields (bfh*e)

(bfh*e)*X(d+bc+bfh*q)

The final result yields to :
a(bfh*e)*(d + bc + bfh * g)

13

BUILDING TOOLS:

BUildiI"]g tools (node degree & graph density).

The out-degree of a node is the number of
out-links it has.

The in-degree of a node is the number of in-
links it has.

The degree of a node is the sum of in-degree
and out-degree.

The average degree(mean) of a node is b/w 3
and 4.

Degree of a simple branch/junction is 3
Degree of a loop contained in 1 statement is 4
Mean degree of 4 or 5 [very busy flow graph

What’s wrong with arrays?
Matrix as a 2-dimensional array is not

convenient for larger graphs. Herez why!...

We have four reasons for the same-

Space: For a matrix representation of an array,
space grows as n’ whereas, for a linked list, it
grows only as kn, where k is a small number
such as 3 or 4.

Weights: Most weights in arrays are
complicated and may have many components.
This means that an additional weight matrix is
required for each such weight.

14

What’s wrong with arrays? (cont...)

* Variable-length weights: If the weights are
regular expressions/algebraic expressions, we
would then need a 2-dimensional string array
(most of whose entries would be null).

* Processing time: Even though operations over
null entries are fast, it still takes time to access
such entries and discard them.

The matrix representation forces us to spend a

lot of time processing combinations of entries
that we know will yield null results.

Bunldlng tOO|S jnked list representatlons.

0000 .

5

N

3 d b

e Gf/’ g 4 c f

he 3 g e h
’ nodel, 3;a

. . nodel,2, The link names will usually

Every node is a unique hode3 2.4 Dbe pointers to entries in a

na{ne/ .numbgr. et string array(where actual
A link is a pair of node node3, 4; b

weight expressions are

names.
: stored).
The linked list entries for no:e:' z - :)
the aboveare [... Qe 30 Hithe weights are fixed
nodeS,2;€ jength, they can be
E t for linked list node5, 3 ;e associated with links in
entries: nodes, 5; h Parallel-fixed entry length

row, column ; data en array.

15

Building tools - Linked list

representations:
Clarifying entries by using node
names & pointers...

1,3:a
2,
3,2;d
3,4;b
4,2;c
4,5;f
52;g
53;e
55;h

list entry

1
2

3

content
nodel, 3;a
node2,exit
node3,2;d
3,4 b
noded, 2;c
4,5;f
node5,2;g
53;e
55;h

Fig.1 is represented in a more logical format
in Fig.2 by representing the nodes under list
entry. Fig 3 is more detailed the with in-links
to that node added (highlighted in black).

Matrix operations:

list entry
1
2

content
nodel, 3;a

node2,exit

node3, 2;d
3,4;b
1,
5,
node4,2;c
4,5;f
3,
node5, 2;¢g
3;e
5:;h
4,
5,

* Parallel Reduction: the easiest operation. After
sorting, parallel links are adjacent entries with the
same pair of node names.

Example: Say we have 3 parallel links from node 17 to
node 44. vy, z & w are the pointers to the weight

expressions.

Depicting all the entries for
parallel links between node
17 & node 44, we have -

node 17, 21; x

node 17,21; x

where,y=y+z+w

, 44y

16

Matrix operations:

* Loop Reduction: the self loop is identified. To remove
the loop, the link weight must be multiplied with all the out-
links from that node.

Start by identifying the out-links to be multiplied. Multiply the
self loop (h*) where h is the link weight of the self loop with
the out-link.

Example: From the below entries, it is evident at entry(5,5;h) that
it is a self loop at node 5 with link weight h. Also, from the 1st
two entries, we see that the out-links from node 5 are 2 and 3.
We need to multiply the self loop (h*) with the link weights of

nodes going from node 5 to node 2 & 3.
going J Refer fig. on slide 43 for the

node5,2;g node 5, 2 ; h*g graph.
53;e 0 5,3; h*e
5,5;h [E—

Matrix operations:

* Cross-Term Reduction: Select a node for reduction. The
cross-term step requires that you combine every in-link to the
node with every out-link from that node. The in-links are
obtained by back pointers. The new links created be removing
the node will be associated with the nodes of the in-links.

Example: Say that the nade to be removed was node 4
T list entry content

list entry content
2 node2, exit 2 node2, exit
inli —/—
(inlink)4, 2
. pe (inlink)3,2
(inlink)3,2
3 node3,2; d

3 node3,2 ; d The changes are 3.2:be
3,4:b highlighted in dark red

3,5; bf

a4 noded, 2; c - d
4,5;f b
(inlink)3,4; b
5 (inlink)4, 5 5 {mllnk] 4,5

17

NODE — REDUCTION OPTIMIZATION:

Node Reduction Optimization (tips):

* The optimum order for node reduction is to
do the lowest degree nodes first.

* When a node with degree 3(may be 1 in-link &
2out-links or 2 in-links & 1 out-link) is removed
, it reduces the total link count by 1 link.

* A degree 4 node keeps the link count the
same & all higher degree nodes increase the
link count.

